High Efficiency Space Solar Cells

2 Per (26.6 cm²)

LEONE (59.6 cm²)

SuperCell (> 72 cm²)

NeXt Triple Junction (XTJ)

Product Features

- Small and large cell sizes offered for optimum packing factor and cost competitiveness
- All sizes qualified for LEO and GEO missions
- Discrete Si bypass diode protection
- Performance for cells <32 cm² is 29.5% efficiency (minimum average @ max power, 28°C, AM0)
- Performance for cells >32 cm² is 28.9% efficiency (minimum average @ max power, 28°C, AM0)
- Available as CIC assembly (Cell-Interconnect-Coverglass with diode) for ease of integration or delivered on completed solar panels (please see Panel Data Sheet)

Space Heritage

- Highest competitive EOL dollar per Watt solutions
- More than 4 million multi-junction cells (over 200K XTJ cells)
 delivered
- Large area LEONE cell (59.6 cm²) delivered on solar panels for LEO constellations and GEO missions
- Large area SuperCell (73 cm²) delivered on solar panels for LEO constellations and GEO missions
- 1 MW annual capacity cells and panels
- On orbit performance for multi-junction solar cells validated to +1% of ground test results on average

Qualification

Key Qualification Results			
Low Earth Orbit (LEO)	> 75,000 cycles		
Geostationary Orbit (GEO)	> 15,550 cycles		
Testing	ESD Survivability Tested to ISO Standards		
Qualification	AIAA-S111 and AIAA-S112		

Product Description

Substrate	Germanium		
Solar Cell Structure	GaInP ₂ /InGaAs/Ge		
Method	Metal Organic Vapor Phase Epitaxy		
Device Design	Monolithic, two terminal triple junction. n/p GalnP ₂ , lnGaAs, and Ge solar cells interconnected with two tunnel junctions		
Standard Sizes	26.6 cm, ² 59.6 cm ² and 73 cm ² are most cost effective and common standard sizes; other sizes available		
Assembly Method	Welded		
CIC Assembly	Coverglass thickness range from 3 mils to 30 mils with various coatings. Interconnects available with either out-of-plane or in-plane stress relief		

NeXt Triple Junction (XTJ)

Typical Electrical Parameters

(AM0 (135.3 mW/cm²) 28°C, Bare Cell)

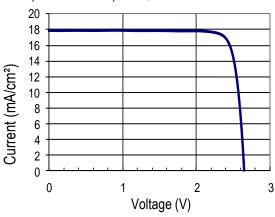
Parameters	< 32 cm ²	> 50 cm²	
Jsc	17.76 mA/cm ²	17.76 mA/cm ²	
Jmp	17.02 mA/cm ²	17.02 mA/cm ²	
Jload _{min avg}	17.14 mA/cm ²	17.14 mA/cm²	
Voc	2.633 V	2.633 V	
Vmp	2.348V	2.300V	
Vload	2.310 V	2.270 V	
Cff	0.85	0.84	
Effload	29.3%	28.8%	
Effmp	29.5%	28.9%	

Radiation Degradation

(Fluence 1MeV Electrons/cm²)

Parameters	1x10 ¹⁴	5x10 ¹⁴	1x10 ¹⁵
Imp/Imp ₀	1.00	0.99	0.95
Vmp/Vmp ₀	0.94	0.91	0.89
Pmp/Pmp ₀	0.95	0.90	0.85

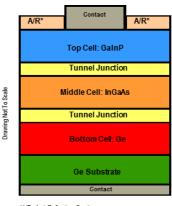
Thermal Properties


Solar Absorptance	0.90 (5 mil CMG-AR, 0.90 for bare cells)
Emittance (Normal)	0.85 (Ceria Doped Microsheet)

Temperature Coefficients (15°C - 75°C) (Fluence 1MeV Electrons/cm²)

Parameters	BOL	5x10 ¹⁴	1x10 ¹⁵
Jmp (µA/cm²/°C)	6.6	10.0	13.2
Jsc (µA/cm²/°C)	11.6	10.9	11.9
Vmp (mV/°C)	-6.5	-6.8	-6.9
Voc (mV/°C)	-5.8	-6.5	-6.6

Typical IV Characteristic


AM0 (135.3 mW/cm²) 28°C, Bare Cell

Weight

84 mg/ cm 2 (Bare) @ 140 μ m (5.5 mil) Ge wafer thickness

Solar Cell Structure

*A/R: Anti-Reflective Coating

Intellectual Property

This product is protected by Spectrolab's portfolio of patents including the following:

- **6**,150,603
- **7**,119,271
- **6**,255,580
- **7**,126,052
- **6**,380,601

Regulatory

Spectrolab's products are fully qualified and are ISO9001 and AS9100 certified